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The problem of initiation of convection in the presence of a parameter which varies 
periodically with time is of interest because parametric interaction has a significant 

influence on stability. The two most natural methods of parametric influence on con- 
vective stability are : modulation of the equilibrium temperature gradient and modula- 
tion of the external force field. Modulation of the temperature gradient can be achieved 

by means of periodic variation with time of the temperature on the boundaries of the 

cavity containing the fluid. Modulation of the external force field (gravity field) asises 
in the presence of vertical oscillations of the fluid. 

These mechanisms of parameteric interaction, generally speaking,are different. Because 

of the thermal skin effect, the periodic variation of temperature with time on the bound- 

aries of the cavity results in the modulation of the mass (convective) force, only in some 
layer of thickness of which decreases with increasing frequency. In the case of vertical 

oscillations of the fluid filled cavity, on the other hand, modualtion of the convective 

force is realized (in the incompressible fluid) uniformly throughout the entire volume. 

However, this distinction disappears at relatively low frequencies when the thickness of 
the thermal skin layer is sufficiently large in comparison to the characteristic linear 

dimension of the cavity. In this limiting case both methods of parametric excitation 

turn out to be essentially equivalent. 
The effeetof periodic variation of a parameter on the initiation of convection was 

studied in papers fl-61. In paper fl] the stability of a plane horizontal layer of fluid 
with free boundaries was studied in the case of periodic modulation of the vertical tem- 

perature gradient. The region of low frequencies where it is possible to neglect the ther- 

mal skin effect was examined. For the case of rectangular wave modulation the exact 
solution was found for the equations of small perturbations, and the stability boundaries 

were determined. In papers p, 5] the effect of temperature gradient modulation was 
investigated under conditions where the presence of the thermal skin effect is significant. 

In paper p] the problem of initiation of convection in a deep basin, the surface temper- 
ature of which varied with time according to the harmonic law, was examined. With 
the aid of an integral method an estimate of the lower stability bo~dary was obtained. 

In [S] the small parameter method was applied to the investigation of stability of a plzie 
horizontal layer with periodic temperature variation on the boundaries. Assuming small 
amplitudes of temperature modulation the critical Rayleigh numbers were found for dif- 
ferent schedules of temperature variation on the free boundaries of the layer. In papers 
[3, 41 the effect of high-frequency vertical vibrations on convective stability of a plane 
horizontal fluid layer was studied. By means of the method of averaging, the dependence 
of the critical Rayleigh number on the vibrational parameter was determined. Finally, 
in paper [6] the structure of convective motion in the super-critical region was studied 
for the case of vertical oscillations. The study was conducted on the basis of numerical 

solution of nonlinear equations of convection. 
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In the present paper the study started in p] is continued. The effect of parametric 

influence (modulation of the vertical temperature gradient or the gravity field) on the 
stability of equilibrium in a plane horizontal layer with free and rigid boundaries is 

examined. The case of a vertical circular cylinder is also treated. By means of the 
method of Kantorovich the system of equations for the perturbations is reduced to a sys- 
tem of ordinary equations for amplitudes which depend on time. Periodic solutions of 
these equations for the case of sinusoidal modulation are found numerically by the Runge- 

Kutta method on an electronic computer. 

1, Modulrtlon of the vertical temperature gradient. At first let 
us examine by means of periodic modulation of the temperature gradient the parametric 
influence on the stability of the equilibrium. We shall have in mind modulations of low 

frequency where the thermal skin effect may be neglected. In this case the equilibrium 

temperature gradient is homogeneous over the volume of the fluid and is modulated near 
an average value A ,, with a frequency o,, and an amplitude as. 

V1’, = -(A,+a,sino,t)y=-A, (2 +qsino,t)y (q=a,/A,) (1.1) 

Here y is the unit vector pointed vertically up. 

Let us introduce as units of distance, time, velocity, temperature and pressure L, 

L”/fi xIL, AoL and PxIL’ (L is the characteristic dimension of the cavity, v 
and X are coefficients of kinematic viscosity and thermal conductivity), respectively. 

Then in nondimensional form the equations of small perturbations of equilibrium can 
be written as 

;_-+ ----P~AW-RJ’~ (1.2) 

T/F g-4 frl sin at) (vy) = AT, divv = 0 (1.3) 

R, = gWoL’ 
TV (1.4) 

Here Rt and P are the Rayleigh and Prandtl numbers, $2 is the nondimensional fre- 

quency of modulation. 
Turning to the examination of the plane horizontal fluid layer, we select the origin 

of coordinates on the lower plane and orient the z-axis vertically up. The x-axis and 
y-axis are placed horizontally. Eliminating the velocity components v,and v,and also 

the pressure p and introducing normal perturbations 

V, = v (z, t) exp i (k,z + k,y), T = 8 (z, t) exp i (Icrs + ksy) (1.5) 

we obtain from (1. Z), (1.3) a system of amplitude equations (the prime designates dif- 
ferentiation with respect to z) 

- k2v) = (UN - 2k2v” + klu) - k2R+3 (1.6) 

- (1 + q sin Qt) v = 8” - k2e (ka = k,P -I- ka2) (1.7) 

Just as in the absence of modulation, the simplest case for analysis is the case with 
free boundaries. Then on the boundaries of the layer 
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v= UC =o,e= 0 for z = 0 and z = 1 U-8) 

(the thickness of the Iayer h is taken as the characteristic dimension /, ). 

The problem (1.6)-(1.8) has a solution of the form 

v (z, t) = a (t) sin nz, 8 (z, t) = b (t) sin rcz (1.9) 

which corresponds to the fundamental level of instability. The amplitudes a (1) and 

b (t) satisfv the system of ordinary equations 

- a’ + m”a = kaR fb 
;; 

(x2 = k2 + a2) 
(1.10) 

‘j.pb’ + xab I- (1 f q sin Qt) a 

Substi~tion of 

a = ft. b = Ifa, t = mz (l=1/?c2JF,?T2=1 Jx”) (1.11) 

allows to reduce the system (1.10) to the “canonical” form 

fl’ + nfl = Rf2, fz’ + $ f2 = (1 + ‘1 sin W fl (1.12) 

(1.13) 

Here the dot indicates derivatives with respect to a new nondimensional time a, 

0 is the new nondimensionai frequency, tl is the amplitude of modulation ; the para- 
meter n plays the role of the friction coefficent, and R is the “reduced” Rayleigh num- 
ber (Rs is the critical Rayleigh number in the absence of modulation). 

The system (1.12) is reduced to an equation of the second order with periodic coeffi- 

cients (1.14) 

Equation (1.14) was obtained in [J]. In the same paper regions of stability and insta- 
bility were found for the case of rectengular modulation. 

The case with rigid boundaries of the layer is more complicated when the boundary 

conditions have the form 

v = V’ = 0, 8 = 0 for z = 0 and z = 1 (1.15) 

For the reduction of the problem to a system of ordinary equations we can apply the 
method of Kantorovich, representing v and 8 in the form of expansions 

(1.16) 
f f 

where F, (z) and @* (z) are systems of base coordinate functions which satisfy the 

boundary conditions (1.15). Substituting (1.16) into system (1.6), (1.Q multiplying by 
F, and a, respectively, and integrating with respect to Z, we obtain a system of ordinary 
first order equations with periodic coefficients for amplitudes ai (t) and b, (t). Limit- 
ing ourselves to the first approximation, we write 

u (2, r) = = (W (s), e (2, t) = b (t)aqz) (1.17) 

F (z) = 9 (1 - z)~, CD (z) = z (1 - z) (1 + z - z”) (i.uQ 

In the selection of the approximation if, (2) the additional condition 8” (0) c 8” (1)= 0, 
which arises from (1.7)‘ was taken into account. 
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For amplitudes a (t) and b (t) a system is obtained which differs from (130) only 

by coefficients. This system can be reduced to the form (1.12) through the substitution 
(1.11) if the following choices are made 

[ 

31 (12 c k”) 1 
‘h m = (504 + 24k’-t k’) (306 + 31kz) ’ 

l=fi * 
62-p 

(1.19) 

In the case of a layer with rigid boundaries the parameters entering into the system 

(1.12) are 
n = 

[ 

R=+, R,= &@I4 + 24k2$ ~)(306 + 3W) 
f1.20) 

Here aa is the approximated value of the critical Raybigh number in the absence of 

modulation for a layer with rigid boundaries (the minimum value corresponds to km = 
= 3.12 and is equal to 1719; the derivation from the exact value of 1708 is 0.6%). 

In this manner the determination of stability boundaries in the presence of modulation 
of the equilibrium temperature gradient in the case of a layer with free or rigid bound- 

aries is reduced to finding periodic solutions of system (1.12). 

2, Modulation of the grrvlty field. We turn now to the examination of 
anothermethod of parametric influence on convective stability. Let the fluid filled 
cavity execute vertical harmonic oscillations. In the frame of reference connected with 

the cavity it is necessary in the equations of motion to replace the acceleration due to 

the force of gravity g by g (1 -i- q Sin o,, tf , where sl= os2 ~~/g is the nondimensional 
modulation parameter, b,, is the amplitude of displacement. 

Retaining the earlier selected units, we write the equations of perturbations in the non- 

dimensional form 

+ 
= -Vp+Av+ Rf(l +qsinQt)Ty (2.1) 

fig-(vy)=AT, divv=O (2.2) 

Parameters Rf, P and 52 were determined earlier in (1.4). The system (2.1),(2,2) 
differs from the analogous system (1.2). (1.3). which was obtained in the case of tempe- 

rature gradient modulation, in that the periodic coefficient (1 $ q sin Qt) now does 

not enter into the thermal conductivi~ equation, but into the equation of motion in the 
form of a coefficient associated with the lifting force. The system of amplitude equar 

tions for the plane layer differs from the corresponding system (1.Q (1.7) in exactly the 
same manner. The substitution of (I. 9) for the case of a layer with free boundaries now 
gives a system for amplitudes a (t) and b (t) 

-----a’ -:- z’a = f?R, (1 + q sin Sit) b, ;; ):Pb’+x’b=a (2.3) 

By substituting 
a = g,, b = lg,, t = rm (2.4 

we reduce the system (2.3) to the form 

g,’ + ng, = R (2 + rl Sin W g2, g,‘+&W=6t (2.5) 

where all parameters, that is I, m, %, o and R are deter~nined by relationships (1.11) 
and (I. 13). just as in the case of temperature gradient modulation. 
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In the case of a layer with rigid boundaries we can utilize. in the method of Kantoro- 
vich, the previous approximations (1.1’7) and (1.18) and reduce, through substitution 

(2.4), the system of amplitude equations again to the form (2.5) with values of parame- 
ters determined by relationships (1.19) and (1.20). 

It is easy to see that the system (2.5) is reduced to a second order equation which 
coincides with (1.14). In this manner Che problems of stability in the case of gravity 

field modulation and in the case of low frequency modulation of the vertical temperature 

gradient, turn out Co be essentially equivalent If the solution of one of these problems 
is known, the solution of the other problem is obtained by a simple recalculation of para- 

meters. 

The problem of the influence of modulation of the gravity field on convective stabi- 

lity of fluid which fills a cavity of arbitrary shape, can also be reduced with the aid of 

the Kantorovich method to the integration of a system of ordinar] equations of the first 
order with periodic coefficients. As a system of base coordinate functions we can select 

exact or approximate characteristic functions of the stability problem in the absence of 

modulation. 
As an example let us examine the problem of stability of equilibrium of a fluid in a 

vertical circular cylinder which executes harmonic oscillations along its axis. We shall 
examine perturbations with the following structure : 

v, = 0, = 0, v, = 2, (r, cp), T = T (T, VP), p = p (z) (24 
Here r, cp and 2 are cylindrical coordinates. From (2.1) and (2.2) we obtain the 

following equations : 

-++ -~+Av+R~(1.+qsinBt)T, fi$--v=AT (2.7) 

Here A is the plane Laplace operator in the variables r and ‘p. 
On the lateral boundary of the cylinder the velocity vanishes and the following con- 

dition of heat output is fulfilled : 

0 = 0, -$a; = -bT for r - 1 (2.8) 

Were b is the Biot number ; the radius of the cylinder was chosen as the unit of length. 

The convective motion is assumed to be closed. This leads to the requirement for the 
loss across the section of the cylinder to be equal to zero. 

Assuming, just as in the static case, that the basic level of instability is connected with 
the antisymmetric flow, the following approximations for velocity and temperature are 

made : u = o (t)Ji fyr) cos rp, T = b (t) [.I, (yr) - Crl cos cp (2.9) 

Here Jris the Bessel function. The boundary conditions (2.8) will be satisfied if the 
lower root of the equation JC (y) = 0 is selected as the parameter Y , i.e. Y = 3.832, 

and if we assume c +r Ji (-0 
--bfl 

The system of equations for amplitudes a (t) and b (t) obtained by the method of 
Kantorovich through transformations (2.4) is again reduced to the canonical system(2.5) 
with the following values of parameters (*) : 

*) The approximate critical valueR0 for the static case is quite close to the exact value. 
Thus, for b = 0 ~thermally insulated boundary) and b = 00 (idealfy thermally conduct- 
ing boundary) we obtain from (2.10) & = 71.9 and Ra = 215.6, respectively. The exact 

values (see p]) are 67.9 and 215.6. 
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1 i 
n ‘h 

-_---* 
Ten 

m=-, 
v v-p 

n= 
+ 6b + 5 + O.Sy= p 

(b+~)!b+ 3) I 

II=%, RO = r’ $- 

(2.10) 

3. Numericrl determination of ctobflity boundrrfe,. The determi- 
nation of regions of stability and instability of system (2.5) was carried out numerically. 

For this purpose the fundamental system of solutions (gi’l, gil)) and (g’,“‘, gf)) satisfying 

the initial conditions g(l”’ (0) = 6i, (3.1) 
was found on a computer by the Runge-Kutta method. 

With the aid of the f~damental system we can find the “norma~~olution which satis- 
fies the condition gi (TJ = Pg, (0) (3.2) 
where T is the period of modulation. For the factor p (see for example [8]) a character- 

istic equation 
PZ - P lgl” (T) + .$’ (T)l + exp i- (n + n-1) Tl = 0 (3.3) 

is obtained in the usual manner. 
The condition for the existence of periodic solutions is obtained from (3.3) for p = rfrl 

3: I$) (I? + @ 671 = i + exp I- (n -t. n-r) T1 (3.4) 
The plus and minus signs refer to “integral” and “half-integral” solutions, respectively, 

The condition (3.4) ties together four parameters which enter into the system (2.5). 

that is R,n, o and n. When relationship (3.4) is satisfied, the system (2.5) has a neutral 

periodic solution. In this manner this ~lationsh~p determines the boundaries of regions 

of stability and instability. For a practical determination of the stability boundary it is 

possible, for example, to fix three parameters and to obtain the satisfaction (with pre- 

scribed accuracy) of relationship (3.4) by varying the fourth parameter. The method is 
readily generalized to a system of arbitrary number of equations. 

Let us now turn to the presentation of numerical results. In Fig. 1, for example, a sta- 
bility map is presented which corresponds to fixed values n = i + ~~ and R= 1.2. 

Fig. 1 Fig. 2 

For R > 1 in the static case the equilibrium is unstable (we recall that the reduced Ray- 
Leigh number R is determined as the ratio of the critical number Rf in the presence of 
modulation, to the critical number RO in the absence of modulation). The modulation of 
the parameter leads to the situation where for R > 1 and for fixed values of amplitude 
and frequency, stabilization of eqnilibrirtm occurs. In Fig. 1 regions of stability and 
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instability are depicted in coordinat?s f@, r), where r = Hn is the absolute nondimen- 
sional amplitude of modulation fn is the relative amplitude). The map shows a funda- 
mental band of instability adjacent to the axis r = 0 (the case r L= 6 corresponds to 

absence of modulation, and the axis r = 6 belongs to the region of instability). The 
resonance regions of instability are located in the range of large values of r, Between 

the fundamental band and the resonance regions there is a band of stability (in Fig. 1 the 
regions of instability are shaded), 

Thus, if for R > i the amplitude of modulation is increased, we can stabilize the equi- 
librium. Further increase in amplitude Ieads again to the onset of instability which is 

connected with the regions of resonant parametric excitation. 

In the fundamental band of instability, oscillations of the integral type grow. These 
oscillations have a period which is equal to the period of modulation, The resonance 

region at the extreme left corresponds to the half-integral growing solution (the period 
is two times greater than the period of m~ulation) . Subsequently regions of integral 
and half-integral solutions alternate. 

The dashed lines in Fig.1 show for comparison the boundaries of stability and instabi- 

lity regions for the case of rectangular modulation. These results are taken from paper 

II]. It can be seen that the structure of regions for sinusoidal and rectangular modulation 

is qualitatively the same. The quantitative differences, however, are fairly significant. 

In Figs.2 and 3 numerical results are presented, they give a picture of the dependence 

of the critical Rayleigh number on modulation parameters. In Fig. 2 the dependence of 

the critical value of the reduced Rayleigh number on dimensionless amplitude of modu- 
lation n is given for fixed o and n (o = 1, n = 3.67). Within the boundaries of the fun- 

damental band of instability the Rayleigh number increases with increasing amplitude 

3, i.e. stabilization takes place. For q> 2.7 (for the values of o and n as indicated) 
the instability is connected with the resonant parametric excitation. In this region the 

dependence of R and tl is not monotone. 

Fig, 3 

Figures 3a and 3b refer to a horizontal layer with rigid boundaries, In this case the 
critical number 1& must be found through minimization of Ill with respect to the wave 
number li while the other parameters are held fixed. For fixed frequency and amplitude 

of m~ulation the parameters no, rz and m depend on the wave number (see Eqs. (1.19) 
and (1.20) ), and This holds consequently also for Xf. In Fig, 3, results of minimization 
are presented for a value of Prandtl number P = 7 (water). The dependence of the mi- 
nimum critical Rayleigh number A’, and the critical wave number k, on ampI~tude is 

presented for several values of nondimensional modulation frequency (curves 1- 3 cor- 
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respond to values of D =lO. 50 and 100; the frequency o which enters into the initial 
system of equations (2.5), in this case does not remain constant along each line because 
it is connected with P hy the relationship (1.13). where m is a function of the wave 
number). 

It is evident from Figs. 3a and 3b that the minimum critical value increases with 
increasing 9 and tends to go to infinity for some limiting tl* which increases with increas- 

ing frequency 61. As one approaches the boundary of the fundamental band of instability 

(n + ?I*) , the critical wave length increases (k, 4 0). 
Beyond the limits of the fundamental band (q> q*) the dependence R, (11) is compli- 

cated. It is determined by minimization with respect to k of threshold values of R, in 

resonance regions of instability (see Fig. 2). In Fig. 3, sections of curves R, (?I) and k, (9) 
are presented for 61 = 50. In the region of resonance bands the stability, in general, 
decreases with increasing n . 

4. The limiting case of high frequencies. The numerical method per- 
mits to obtain the stability boundaries for arbitrary values of parameters of the system 

(1.12) or (2.5). In the limiting case of high frequencies, using the method of averaging 
[9]. we can obtain a simple analytical equation for the stability boundary. Strictly speak- 

ing, the investigation of the high-frequency limit is physically justified only in the case 
of vertical oscillations of the cavity ; high-frequency modulation of the temperature 

gradient is unavoidably connected with the appearance of a thermal skin layer which is 

not taken into account in the derivation of system (1.12). 
In the case of rapid modulation of the gray ity field, according to [9], the solution of 

Eq. (1.14) is presented in the form of a sum of a slowly with time varying part f,, and a 
rapidly oscillating small additional component k 

f (r) = fo (t) + 4 (rl (4-i) 

Substituting (4.1) into the initial equation (1.14) and retaining the principal terms, 
we obtain after integration & (r) = - Rtlo+ f0 (r) sin 07 (4.2) 

(in the integration the slow part /o is considered to be constant). Returning to the initial 
equation and averaging it over the period of modulation 2~ / o, we obtain an equation 

for f0 (4 f’o + (n + n-9 fo + (1 - R + l/a R’q’o-9 to = 0 (4.3) 

As is evident, the presence of high-frequency vibrations is in essence equivalent to 
renormalization of the static gravity field. 

The stability boundary is determined from (4.3) ( l ) 
l/s R2q20-2 = R - 1 (4.4) 

Thus, in the limiting case of high frequncies the critical value of the Rayleigh num- 
ber R is determined by a single parameter, the ratio of n i o. 

* ) In the case of rectangular modulation the high frequency limit is obtained from the 

general characteristic relationship (2.7) of p]. If the relative amplitude n = r/R is 
introduced, then formula (3.7) of p] is written in the form 

This relationship differs from (4.4) only by a numerical factor. 
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For the averaging method to be applicable, it is necessary of course that the modula- 
tion period is small in comparison to the characteristic time of the system in the absence 

of modulation. In the case of heating from below this gives an inequality for the non- 
dimensional frequency o > v/R - 1 + ez - e (2e = n + n-3 (‘1.5) 

In Fig. 4, stability boundaries are presented in the plane of parameters R and ‘1 1 o. 

The solid line corresponds to the asymptotic equation (4.4), obtained by the averaging 

method. The dashed lines represent stability boundaries which were found by means of 

numerical solution of system (2.5) for various values of o and n = 3.67 (it is recalled 
that for finite o the location of neutral lines is determined not only by the ratio 11 / 0, 

but also separately by parameters o and n). It is evident from Fig.4 that with increasing 

frequency the neutral lines which form the bound- 

ary of the fundamental region of instability, con- 
verge fairly rapidly to the limit-line determined 

lU 

5 

0 I 2 3 4 5 

Fig. 4 Fig. 5 

by Eq. (4.4). In practice the case of high frequencies is realized even for o > 10 . 

However, it is necessary to note that in addition to the fundamental region of instability 

at finite values of o there are also resonance regions. In Fig.4 the lower boundary of 
the first resonance region which corresponds to a half-integral solution is shown for o = 
= 5, 10 and 20. With increasing frequency this boundary increases pushing out to infi- 
nity. In the high-frequency approximation only the fundamental instability region 

remains. 
Equation (4.4) has a universal character. With its aid we can determine the boundary 

of the fundamental region of instability for a cavity of arbitrary form in the limiting 
case of high frequencies. For the transition to a concrete case it is necessary in (4.4) to 
separate the parameters which depend on the form of the cavity and the conditions of 
heating. For this purpose i is necessary in (4.4) to substitute R = R/l RO and 
o = mL’Joo / I/G, where PO is the static Rayleigh number, 00 is the dimensional fre- 
quency of modulation. For the cases which have been examined the parameter m is 
determined by relationships (1. ll), (1.19) and (2.10). After substitution we obtain 

(4.6) 

Here (z is a dimensionless parameter which determines the influence of high-frequency 

vibrations on the critical Rayleigh number (00 is the frequency, b. is the amplitude of 
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displacement), It is evident from the equation that absolute stabilization occurs when 
the parameter a reaches the value a, = m / j.6. 

We shall present results for a planar horizontal layer bounded by rigid isothermal planes, 

and for a vertical circular cylinder with general conditions of heat output. 
In the case of horizontal layer, the parameters R. and m depend on the wave number 

(see (1.19) and (1.20)). In this connection Eq. (4.6) determines a family of neutral 
curves RI = R#) which depend on the vibration parameter a (the thickness of the layer 

h enters into a as the characteristic dimension). These neutral curves are shown in Fig. 5. 

With increase in a the minimum critical value R, increases and the critical wave num- 
berdecreases. The dependence of R, (a) and k, (a) is presented in Figs, 6a and 6b. 
For a -, a*,where a, = 0.0347, absolute stabilization sets in. If a > a,, the equi~brium 

is stable for any value of vertical temperature gradient. It is emphasized that this applies 

to the limiting case of high frequencies. For high, but finite frequencies there are reso- 
nance regions of instability even for a > a,, but they are located high (see Fig.4). The 
values presented in Fig. 6 agree with results of calculations in [4]. The vibration para- 

meter a which was introduced above is more convenient than the parameter CL of [4] 
because the latter contains the temperature gradient. 

Fig. 6 

t O&7 I crc 
0.03 ax 

Fig. 7 

In the case of the vertical cy Iinder, parameters X0 and m depend on the Biot number 

b (see Eqs. (2.10). The dependence of R, on the vibrational parameter a for several 

values of 6 is presented in Fig. 7 (the parameter a is determined through the radius of 
the cylinder). It is evident that the limiting value a, which corresponds to absolute sta- 
bilization depends on b and decreases with increasing b. Thus, the effect of stabilization 
is more and more significant, the greater the heat output from the walls of the cylinder. 

In conclusion we present some numerical evaluations. For complete stabilization 
(under conditions of high lrequencies) it is necessary that the vibration parameter a 

reaches the limiting value a+. The limiting value of vibrational velocity follows from 
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this 
o&o = a, gL* (vx)-‘I’ (4.7) 

In order to obtain a significant effect of stabilization at values of vibrational velocity 
which are reasonable from the experimental point of view, one should work with fluids 

which have the highest possible value of parameter VT for sufficiently small charac- 

teristic dimensions L. Thus, for a plane layer of water (6F = 0.0038 cma/ s) with a 

thickness of 2 mm a vibrational velocity oobo = 360 cm/s is obtained from (4.7) as 

necessary for complete stabilization. This means that at an amplitude of displacement 

of 2 mm stabilization occurs near 250Hz. This effect is much more strongly pronounced 

in fluids with a high value of the parameter I/v? (glycerin, olive oil, some silicone 

liquids). 
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The mode of flow over the windward side of a supersonic leading edge wing is examined. 
In spite of a number of investigations n-41, this problem has not been solved correctly. 
The difficulty consists in the fact that in the flow field behind a strong wave there are 

regions of homogeneous potential and vortex flows which must be matched with suffici- 
ent smoothness. 

An analytical theory is developed below for hypersonic flow past a wing with an 
attached wave. This theory allows to carry out the necessary conjuction of flows. 


